Exploiting Heavy Tails in Training Times of Multilayer Perceptrons. A Case Study with the UCI Thyroid Disease Database
نویسندگان
چکیده
The random initialization of weights of a multilayer perceptron makes it possible to model its training process as a Las Vegas algorithm, i.e. a randomized algorithm which stops when some required training error is obtained, and whose execution time is a random variable. This modelling is used to perform a case study on a well-known pattern recognition benchmark: the UCI Thyroid Disease Database. Empirical evidence is presented of the training time probability distribution exhibiting a heavy tail behavior, meaning a big probability mass of long executions. This fact is exploited to reduce the training time cost by applying two simple restart strategies. The first assumes full knowledge of the distribution yielding a 40% cut down in expected time with respect to the training without restarts. The second, assumes null knowledge, yielding a reduction ranging from 9% to 23%.
منابع مشابه
Performance Analysis of Neural Networks Training using Real Coded Genetic Algorithm
Multilayer perceptrons (MLPs) are widely used for pattern classification and regression problems. Backpropagation (BP) algorithm is known technique in the training of multilayer perceptrons. However for its optimum training convergence, the learning and momentum parameters need to be tuned on trial and error method. Further, sometimes the backpropagation algorithm fails to achieve global conver...
متن کاملInvestigation of heavy trace elements in neoplastic and non-neoplastic human thyroid tissue: A study by proton-induced X-ray emissions.
Background: Within the context of developing techniques to facilitate the diagnosis of the thyroid diseases, the elemental composition of pathological thyroid tissue (neoplastic and non-neoplastic) was investigated by proton induced X-ray emission. The PIXE has been widely used as a sensitive technique for trace elemental analysis in both biological and medical fields. Materials and Methods: Th...
متن کاملModeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)
Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...
متن کاملFeature Selection Using a Multilayer Perceptron
The problem of selecting the best set of features for target recognition using a multilayer perceptron is addressed in this paper. A technique has been developed which analyzes the weights in a multilayer perceptron to determine which features the network finds important and which are unimportant. A brief introduction to the use of multilayer perceptrons for classification and the training rule...
متن کاملPrediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0704.2725 شماره
صفحات -
تاریخ انتشار 2007